Open Bionics’ 3D-printed prosthetic arm is now available in the US

Hero Arm debuted in the UK last year.
by Christine Fisher
Open Bionics

One year after Open Bionics began selling its 3D-printed Hero Armprosthetic in the UK, the bionic arm is available in the US. Open Bionics has made a name for itself as a start-up specializing in low-cost prosthetics, and you might remember it as the company behind arms inspired by Iron Man, Star Wars, Frozen and Deus Ex. But until now, the Hero Arm has only been available in the UK and France.

 

Thanks to 3D scanning and printing, Open Bionics can custom build each arm, and do so faster and cheaper than its competitors. According to the company, Hero Arm’s muscle sensors enable lifelike precision and multiple grips. Motors allow for haptic feedback and beepers and lights provide other notifications to the wearer. Even with all of that technology, the arm weighs less than a kilogram, and it can be used by anyone over the age of eight. You can see more of the features in the video below.

AI IS FUELING SMARTER PROSTHETICS THAN EVER BEFORE

By Andrea Powell

THE DISTANCE BETWEEN prosthetic and real is shrinking. Thanks to advances in batteries, brain-controlled robotics, and AI, today’s mechanical limbs can do everything from twist and point to grab and lift. And this isn’t just good news for amputees. “For something like bomb disposal, why not use a robotic arm?” says Justin Sanchez, manager of Darpa’s Revolutionizing Prosthetics program. Well, that would certainly be handy.

Brain-Operated Arm

Capable of: Touching hands, reaching out
Mind-controlled limbs aren’t new, but University of Pittsburgh scientists are working on an arm that can feel. Wires link the arm and brain, so when pressure is applied, a signal alerts the sensory cortex.

Hand That Sees

Capable of: Looking for an opportunity
Researchers at Newcastle University have designed a hand with a tiny camera that snaps pics of objects in its view. Then an AI determines an action. Like, grasp that beer and raise it to my mouth.

The Linx

Capable of: Climbing every mountain
Unlike older lower-limb prosthetics, the Linx can tell when it’s sitting in a chair. At just under 6 pounds, it relies on seven sensors that collect data on activity and terrain, helping the leg adapt to new situations.

Bebionic

Capable of: Making rude gestures
It’s the only prosthetic hand with air-bubbled fingertips—great for typing and handling delicate objects (like eggs). And because individual motors power natural movements, wearers can flip the bird in an instant.

The Michelangelo

Capable of: Painting masterpieces
Whereas many prosthetics have a stiff thumb, Ottobock designed this model with a secondary drive unit in the fattest finger—making it opposable. So it’s easier to hold, say, a paintbrush. Big thumbs up!

The LUKE Arm

Capable of: Wielding lightsabers
Yep, LUKE as in Skywalker. The Life Under Kinetic Evolution arm is the first muscle- controlled prosthetic to be cleared by the FDA. With up to 10 motors in the arm, the Force is definitely with this one.

Source of the Article: Wired.com

BIONIC LIMBS ‘LEARN’ TO OPEN A BEER

By Eric Niller

INFINITE BIOMEDICAL TECHNOLOGIES

ANDREW RUBIN SITS with a Surface tablet, watching a white skeletal hand open and close on its screen. Rubin’s right hand was amputated a year ago, but he follows these motions with a special device fitted to his upper arm.

Electrodes on his arm connect to a box that records the patterns of nerve signals firing, allowing Rubin to train a prosthetic limb to act like a real hand. “When I think of closing a hand, it’s going to contract certain muscles in my forearm,” he says. “The software recognizes the patterns created when I flex or extend a hand that I do not have.”

The 49-year-old college professor from Washington, DC, drives several times a month to Infinite Biomedical Technologies, a Baltimore startup company that is using deep learning algorithms to recognize the signals in his upper arm that correspond with various hand movements.

Each year, more than 150,000 people have a limb amputated after an accident or for various medical reasons. Most people are then fitted with a prosthetic device that can recognize a limited number of signals to control a hand or foot, for example.

But Infinite and another firm are taking advantage of better signal processing, pattern recognition software and other engineering advances to build new prosthetic controllers that might give Rubin and others an easier life. The key is boosting the amount of data the prosthetic arm can receive, and helping it interpret that information. “The goal for most patients is to get more than two functions, say open or close, or a wrist turn. Pattern recognition allows us to do that,” says Rahul Kaliki, CEO of Infinite. “We are now capturing more activity across the limb.”

Kaliki’s team of 14 employees are building the electronics that go inside other companies’ prosthetic arms. Infinite’s electronic control system, called Sense, records data from up to eight electrodes on his upper arm. Through many hours of training on the company’s tablet app, the device can detect the intent encoded in Rubin’s nerve signals when he moves his upper arm in a certain way. Sense then instructs his prosthetic hand to assume the appropriate grip.

Last Friday, Infinite’s Kaliki received notice from FDA officials that Sense had been approved for sale in the United States. Kaliki says he expects to begin installing them in prosthetic limbs by the end of November. In 2017, FDA officials approved a similar system by Chicago-based Coapt. Today more than 400 people are using the system at home, according to CEO Blair Lock.

COAPT

Lock started as an engineer 13 years ago at the Rehabilitation Institute of Chicago, an affiliate of Northwestern University. He worked with surgeons who were repairing nerve damage in amputee patients. Over time, he realized that building better prosthetics would be easier if he could figure out a way to pick up better signals from the body, he says. “What’s new is providing a much more natural, more intuitive method of control using [bio-electronic] signals,” Lock says.

In earlier versions of prosthetic devices, electrodes recorded signal strengths “but it was like listening to an orchestra and only knowing how loud the instruments are playing,” Lock says. “It was a significant effort to learn the content and fidelity of the signals.” The Coapt system works inside an amputee’s prosthetic hand and costs about $10,000 to $15,000, depending on the amount of customization needed. Artificial limbs can costs anywhere from $10,000 to $150,000, according to Lock.

Nicole Kelly got a new prosthetic device with the Coapt control system about a year ago. Now the 28-year-old Chicagoan can grind fresh pepper into her food and hold playing cards with friends. She can also open a beer.

“For many things, it wasn’t that I couldn’t do them before, but suddenly I can do them much easier,” says Kelly, who was born without her lower left arm.nHer prosthetic “is not my body, and it’s not 100 percent natural,” she said. “There’s a learning curve of my body communicating with this technology. Even the process of the best way to hold the salt and pepper shakers, I am essentially doing it for the first time.”

Source of the Article: https://www.wired.com/story/bionic-limbs-learn-to-open-a-beer/